If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x+81=455
We move all terms to the left:
x^2-18x+81-(455)=0
We add all the numbers together, and all the variables
x^2-18x-374=0
a = 1; b = -18; c = -374;
Δ = b2-4ac
Δ = -182-4·1·(-374)
Δ = 1820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1820}=\sqrt{4*455}=\sqrt{4}*\sqrt{455}=2\sqrt{455}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{455}}{2*1}=\frac{18-2\sqrt{455}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{455}}{2*1}=\frac{18+2\sqrt{455}}{2} $
| 2/5y-6=12 | | v/5+8=37 | | X/2+4=x/5-6 | | n/5=3-n/10 | | (9-x)^2=455 | | e–66=163 | | x/8+4=0 | | -5(t-5)+7t=8t-8 | | 4(x-1)=9x-5x | | 7z+1-2z=10+4z-4 | | 5(n+8)=75 | | (-80)+x=(-40) | | 2x–3=11–5x | | 12/2b=5 | | 9m-21=41 | | 4p+4=15-2p | | y-1,254=626 | | X+(2x+40)+3x-50)=15002 | | 9y+5y-10=0 | | 2(p+1)=3(p+1) | | 4x=8=5x-3 | | 4x+8+5x-3=90 | | 3x-26=3x+10 | | 2x+9=-4+21 | | x+13=4x+x | | 102x+9=-4+21 | | X+3+3x=7 | | 10x-14+7x-8=180 | | 6x+10+5x+28=180 | | X/9=64/x | | 2x-x+9x-2=16 | | 4x+20=x+44 |